Activity-dependent tau protein translocation to excitatory synapse is disrupted by exposure to amyloid-beta oligomers.

نویسندگان

  • Marie Lise Frandemiche
  • Sandrine De Seranno
  • Travis Rush
  • Eve Borel
  • Auréliane Elie
  • Isabelle Arnal
  • Fabien Lanté
  • Alain Buisson
چکیده

Tau is a microtubule-associated protein well known for its stabilization of microtubules in axons. Recently, it has emerged that tau participates in synaptic function as part of the molecular pathway leading to amyloid-beta (Aβ)-driven synaptotoxicity in the context of Alzheimer's disease. Here, we report the implication of tau in the profound functional synaptic modification associated with synaptic plasticity. By exposing murine cultured cortical neurons to a pharmacological synaptic activation, we induced translocation of endogenous tau from the dendritic to the postsynaptic compartment. We observed similar tau translocation to the postsynaptic fraction in acute hippocampal slices subjected to long-term potentiation. When we performed live confocal microscopy on cortical neurons transfected with human-tau-GFP, we visualized an activity-dependent accumulation of tau in the postsynaptic density. Coprecipitation using phalloidin revealed that tau interacts with the most predominant cytoskeletal component present, filamentous actin. Finally, when we exposed cortical cultures to 100 nm human synthetic Aβ oligomers (Aβo's) for 15 min, we induced mislocalization of tau into the spines under resting conditions and abrogated subsequent activity-dependent synaptic tau translocation. These changes in synaptic tau dynamics may rely on a difference between physiological and pathological phosphorylation of tau. Together, these results suggest that intense synaptic activity drives tau to the postsynaptic density of excitatory synapses and that Aβo-driven tau translocation to the spine deserves further investigation as a key event toward synaptotoxicity in neurodegenerative diseases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P135: The Role of Amyloid Beta-Peptides and Tau Protein in Alzheimer\'s Disease

Alzheimer's desease is the most common age-related neurodegenerative disorder, and cognitive problems such as defects in learning and memory are of its symptoms.  Among the factors involved in the pathogenesis of the disease are biochemical disorders in protein production, oxidative stress, decreased acetylcholine secretion and inflammation of the brain tissue. Extra-neuronal accumulation ...

متن کامل

Soluble Oligomers of Amyloid β Protein Facilitate Hippocampal Long-Term Depression by Disrupting Neuronal Glutamate Uptake

In Alzheimer's disease (AD), the impairment of declarative memory coincides with the accumulation of extracellular amyloid-beta protein (Abeta) and intraneuronal tau aggregates. Dementia severity correlates with decreased synapse density in hippocampus and cortex. Although numerous studies show that soluble Abeta oligomers inhibit hippocampal long-term potentiation, their role in long-term syna...

متن کامل

Amyloid-β Oligomers Interact with Neurexin and Diminish Neurexin-mediated Excitatory Presynaptic Organization

Alzheimer's disease (AD) is characterized by excessive production and deposition of amyloid-beta (Aβ) proteins as well as synapse dysfunction and loss. While soluble Aβ oligomers (AβOs) have deleterious effects on synapse function and reduce synapse number, the underlying molecular mechanisms are not well understood. Here we screened synaptic organizer proteins for cell-surface interaction with...

متن کامل

P 119: Role of Gut Bacteria on Alzheimer’s Disease

Alzheimer’s disease (AD) is a neurodegenerative disease that is the most common type of dementia.AD includes 60_80% of dementia and most people with AD have more than 65 years old.AD causes losing neuronal activity by abnormal proteins. Plaques of beta-amyloid and tangles of “tau” protein can lead to AD. Recently evidence has found that AD may come from outside of central nerv...

متن کامل

Soluble oligomers from a non-disease related protein mimic Abeta-induced tau hyperphosphorylation and neurodegeneration.

Protein aggregation and amyloid accumulation in different tissues are associated with cellular dysfunction and toxicity in important human pathologies, including Alzheimer's disease and various forms of systemic amyloidosis. Soluble oligomers formed at the early stages of protein aggregation have been increasingly recognized as the main toxic species in amyloid diseases. To gain insight into th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 34 17  شماره 

صفحات  -

تاریخ انتشار 2014